Exaggerated cation leak from oxygenated sickle red blood cells during deformation: evidence for a unique leak pathway.
نویسندگان
چکیده
An abnormal susceptibility of the sickle red blood cell (RBC) membrane to deformation could compromise its permeability barrier function and contribute to the exuberant cation leakiness occurring during the sickling phenomenon. We examined this hypothesis by subjecting RBCs at ambient oxygen tension to elliptical deformation, applying shear stress in a viscous medium under physiologic conditions. Compared with normal and high-reticulocyte control RBCs, sickle RBCs manifest an exaggerated K leak response to deformation. This leak is fully reversible, is both Cl and Ca independent, and at pHe 7.4 is fully balanced so that Kefflux equals Nainflux. This abnormal susceptibility is also evident in that the K leak in response to deformation occurs at an applied shear stress of only 141 dyne/cm2 for sickle RBCs, as compared to 204 dyne/cm2 for normal RBCs. Fresh sickle RBC membranes contain elevated amounts of lipid hydroperoxide, the presence of which is believed to provide the biochemical basis for enhanced deformation susceptibility. When examined at pHe 6.8, oxygenated sickle RBCs acquire an additional, unbalanced (Kefflux > Nainflux) component to the K leak increment specifically ascribable to deformation. Studies with inhibitors suggest that this additional component is not caused by a known leak pathway (eg, either K:Cl cotransport or the Gardos channel). This abnormal susceptibility of the sickle membrane to development of cation leakiness during deformation probably contributes to the exuberant cation leak taking place during RBC sickling.
منابع مشابه
Deformation of swollen erythrocytes provides a model of sickling-induced leak pathways, including a novel bromide-sensitive component.
Deoxygenation-induced red blood cell (RBC) sickling probably activates multiple cation leak pathways. In an attempt to model this, we examined the net passive K efflux ("K leak") from normal and sickle RBCs undergoing elliptical deformation in hypotonic media (200 mOsmol/L). This hypotonic deformation activates two deformation-dependent K leak pathways that are not detectable during the balance...
متن کاملLipid hydroperoxides permit deformation-dependent leak of monovalent cation from erythrocytes.
Subtle peroxidative perturbation of normal red blood cells (RBC) using t-butylhydroperoxide creates a leak pathway for monovalent cations that is reversibly activated by cell deformation. To determine what factor promotes expression of this unique membrane defect, we have dissected "peroxidation" into components that can be evaluated separately by comparing K leak from suitably modified RBC dur...
متن کاملSynergistic effects of oxidation and deformation on erythrocyte monovalent cation leak.
The normal red blood cell (RBC) membrane is remarkable for its durability (eg, preservation of permeability barrier function) despite its need to remain deformable for the benefit of microvascular blood flow. Yet, it may be hypothesized that the membrane's tolerance of deformation might be compromised under certain pathologic conditions. We studied this by subjecting normal RBC in viscous suspe...
متن کاملThe effect of deoxygenation on whole-cell conductance of red blood cells from healthy individuals and patients with sickle cell disease.
Red blood cells from patients with sickle cell disease (SCD) exhibit increased electrogenic cation permeability, particularly following deoxygenation and hemoglobin (Hb) polymerisation. This cation permeability, termed P(sickle), contributes to cellular dehydration and sickling, and its inhibition remains a major goal for SCD treatment. Nevertheless, its characteristics remain poorly defined, i...
متن کاملRED CELLS The effect of deoxygenation on whole-cell conductance of red blood cells from healthy individuals and patients with sickle cell disease
Red blood cells from patients with sickle cell disease (SCD) exhibit increased electrogenic cation permeability, particularly following deoxygenation and hemoglobin (Hb) polymerisation. This cation permeability, termed Psickle, contributes to cellular dehydration and sickling, and its inhibition remains a major goal for SCD treatment. Nevertheless, its characteristics remain poorly defined, its...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 80 9 شماره
صفحات -
تاریخ انتشار 1992